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BACKGROUND: Exposure to chemical mixtures is recognized as the real-life scenario in all populations, needing new statistical methods that can assess
their complex effects.
OBJECTIVES:We aimed to assess the joint effect of in utero exposure to arsenic, manganese, and lead on children’s neurodevelopment.

METHODS:We employed a novel statistical approach, Bayesian kernel machine regression (BKMR), to study the joint effect of coexposure to arsenic,
manganese, and lead on neurodevelopment using an adapted Bayley Scale of Infant and Toddler Development™. Third Edition, in 825 mother–child
pairs recruited into a prospective birth cohort from two clinics in the Pabna and Sirajdikhan districts of Bangladesh. Metals were measured in cord
blood using inductively coupled plasma-mass spectrometry.

RESULTS: Analyses were stratified by clinic due to differences in exposure profiles. In the Pabna district, which displayed high manganese levels
[interquartile range (IQR): 4:8, 18 lg=dl], we found a statistically significant negative effect of the mixture of arsenic, lead, and manganese on cogni-
tive score when cord blood metals concentrations were all above the 60th percentile (As �0:7 lg=dl, Mn �6:6 lg=dl, Pb �4:2 lg=dl) compared to
the median (As= 0:5 lg=dl, Mn=5:8 lg=dl, Pb= 3:1 lg=dl). Evidence of a nonlinear effect of manganese was found. A change in log manganese
from the 25th to the 75th percentile when arsenic and manganese were at the median was associated with a decrease in cognitive score of − 0:3
(− 0:5, − 0:1) standard deviations. Our study suggests that arsenic might be a potentiator of manganese toxicity.
CONCLUSIONS: Employing a novel statistical method for the study of the health effects of chemical mixtures, we found evidence of neurotoxicity of
the mixture, as well as potential synergism between arsenic and manganese. https://doi.org/10.1289/EHP614

Introduction
Childhood exposure to neurotoxicants is a potential impediment
to economic development, as it is most prevalent in developing
countries, making this issue particularly poignant in countries
such as Bangladesh (Suk et al. 2003; Grandjean et al. 2015).
Growing evidence from animal research indicates that the central
nervous system is the most vulnerable of all body systems to
chemical injury during development (Faustman et al. 2000;
Rodier 2004). One of the most widely studied categories of neu-
rotoxicants is metals. Among metals, arsenic, lead, and manga-
nese are prevalent in the environment and have evidence of
neurotoxicity. These three metals are thus ideal candidates on
which to test new statistical methodologies for mixtures. Arsenic,
lead, and manganese exposure is widely prevalent in Bangladesh
(Kile et al. 2009), and share the central nervous system as the pri-
mary toxicity target in children (Bressler et al. 1999; Clarkson

1987; Pola�nska et al 2013; Vahter 2008; Zoni and Lucchini
2013). Exposure to lead even at low levels is commonly accepted
as neurotoxic. The neurotoxic effects of arsenic and manganese
at levels commonly found in the environment are less well under-
stood, but emerging evidence suggests they too are a concern.
Prior to our work, manganese–arsenic interaction studies in the
Bangladeshi population were cross-sectional and lacked adequate
power to assess interactions among mixture components
(Wasserman et al. 2006). An epidemiologic investigation in
Mexico found evidence of both an inverted “U” relationship
between blood Mn and infant development (i.e., both low and
high blood Mn levels were associated with poorer performance)
and of a lead–manganese interaction being synergistically more
toxic (Claus Henn et al. 2010, 2012).

Previous studies on the Bangladeshi population (Wasserman
et al. 2004, 2006, 2007, 2008; Hamadani et al. 2011) have shown
that arsenic exposure during childhood through drinking water is
negatively associated with cognition of school-age children.
How-ever, this exposure has not been found to be associated with
cognitive development at earlier stages in life (Tofail et al. 2009;
Hamadani et al. 2010). A recent study of the independent effect
of water manganese exposure among school-age Bangladeshi
children exposed to low-level arsenic found evidence of manga-
nese neurotoxicity but no evidence of arsenic effects on neurode-
velopment (Wasserman et al. 2006). Our group has recently
evaluated, using traditional linear regression approaches, the
association between postnatal exposure to heavy metals and
Bayley neurodevelopment scores measured at 20–40 mo (Bayley
1993). The analyses were conducted in the same population con-
sidered in the present study (Rodrigues et al. 2016). The study
reported neurotoxic effect of 24-mo exposure to blood lead and
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water arsenic, as well as an inverted-U dose–response relation-
ship between water manganese and cognitive development.
Recently, more attention has been directed towards studying the
joint effects of environmental metal mixtures, that is, investigat-
ing interactions that may characterize the joint effect of mixtures
(Wright et al. 2006; Claus Henn et al. 2012, 2014). Traditionally,
mixtures have been studied via multivariable parametric regres-
sion approaches that concomitantly adjust for the confounding
effects of mixture components and estimate the independent
effect of each component, adjusting for the others. If multiple
metals do act as a mixture, this approach would be limited by
both multicollinearity and model misspecification. Moreover, it is
challenging to specify a correct parametric model that incorpo-
rates the possibility of any type of interaction and nonlinear
effects among multiple concurrent exposures; the likelihood that
all components of a mixture will always have linear effects seems
remote. Statistical models designed to address mixtures are rela-
tively new, and several approaches are now available (Bobb et al.
2015; Feder et al. 2009; Gennings et al. 2013; Zanobetti et al.
2014) that address the extremely complex questions that underlie
the relationships between environmental mixed exposures and
their health effects.

Our study contributes to the scientific literature by providing
new evidence on the effects of metal mixtures on neurodevelop-
ment in Bangladesh, and by employing a novel statistical
approach, Bayesian kernel machine regression (BKMR) (Bobb
et al. 2015), which flexibly models the joint effect of the mixture
components, allowing for potential interactions and nonlinear
effects. Specifically, our study provides a prospective analysis
(prior studies were cross-sectional) and focuses on child neurode-
velopment at 20–40mo, evaluating its association with prenatal
coexposures to lead, arsenic, and manganese. We used umbilical
cord blood arsenic, manganese, and lead concentrations as bio-
markers of late pregnancy exposure. We focused on prenatal ex-
posure, as there is evidence that this time period is one of
heightened susceptibility (Mazumdar et al. 2011). The BKMR
approach allows us to study the joint effect of the components of
the mixture. Further, we are able to disentangle how the joint
effect comes about, allowing for both interactions and nonlinear
effects. In particular, we examined a) whether exposure to this
mixture jointly is associated with adverse neurodevelopmental
effects; b) the dose–response relationships between combinations
of metal exposures and cognition; and c) whether the impact of a
metal is more pronounced when it occurs as part of a mixture
(i.e., whether the components of the mixture interact).

Methods

Study Population
The study population has been described previously (Gleason
et al. 2014; Kile et al. 2014). Briefly, between 2008 and 2011, we
recruited pregnant women to participate in a prospective study to
examine the effects of chronic low-level arsenic exposure on
reproductive health outcomes. Participants were recruited from
two rural health clinics operated by the Dhaka Community
Hospital Trust (DCH) in the Sirajdikhan and Pabna Sadar upazi-
las of Bangladesh. Between 2010 and 2013, healthcare workers
invited families to participate in a follow-up study to examine
children’s neurodevelopment. The study base for this analysis
consisted of all children born during the reproductive cohort
study who were 20 to 40 mo of age. This study was approved by
the Human Research Committees at the Harvard T.H. Chan
School of Public Health (Harvard Chan School) and Dhaka
Community Hospital (DCH). Boston Children’s Hospital for-
mally ceded review of the follow-up study to the Harvard Chan

School. Informed consent was obtained from all participants or
their parents before enrollment and prior to engaging in any study
activities.

A total of 1,613 women were enrolled in the reproductive
health study during early pregnancy, of whom 1,458 women had
a confirmed singleton pregnancy. Among those with a live birth,
a total of 964 children participated in follow-up activities, includ-
ing 827 who underwent neurodevelopmental assessments. The
sample for which both cord blood and neurodevelopmental scores
were available was 825, and served as the sample for this analysis
(see Table S1 for comparison of baseline maternal and child char-
acteristics in the reproductive health and neurodevelopment
studies).

Arsenic, Manganese, and Lead Exposure
We collected umbilical cord venous blood in trace element–free
tubes at time of delivery from participants. Samples were kept at
4�C and shipped to the Trace Metals Laboratory at the Harvard
Chan School. All samples were processed in a dedicated trace
metal clean room outfitted with a Class 100 clean hood and using
glassware that was cleaned by soaking in 10% HNO3 for 24 h
and rinsed several times with 18X deionized water. Blood sam-
ples were prepared for measurement of arsenic, manganese, and
lead concentrations by first weighing (∼ 1 g) and then digesting
samples in 2 mL concentrated nitric acid for 24 h at room tem-
perature. These samples were then treated overnight with 30%
hydrogen peroxide (1 mL per 1 g of blood) and then diluted to
10 mL with deionized water. Acid-digested samples were then
analyzed for metal concentrations with a dynamic reaction cell-
inductively coupled plasma mass spectrometer (Perkin Elmer).
The average of five replicate measurements for each individual
sample was reported as the final value.

Neurodevelopmental Outcomes
We translated the Bayley Scales of Infant and Toddler
Development™, Third Edition (BSID-III™) (Bayley 2006) into
Bengali and adapted it for use in rural Bangladesh (M.M.). Two
primary outcomes were derived by summing across raw scores of
cognitive and language development for each participant: a) raw
cognitive development score (CS); and b) raw language develop-
ment composite score (LCS; sum of the raw scores on the expres-
sive and receptive scales). Trained study personnel who were
unaware of participants’ umbilical cord blood metal levels
administered the tests using standard protocols. An expert child
neurologist (M.M.) and neuropsychologist (D.C.B.) oversaw
administration of the BSID-III™ and quality control, which
included frequent site visits and review of videotaped administra-
tion of neurodevelopmental assessments.

Covariates
We collected demographic information using structured question-
naires at three scheduled clinic visits during pregnancy to obtain
data on age, education, smoking history, and socioeconomic sta-
tus. Gestational age at birth was determined by ultrasound mea-
surement taken at time of enrollment (<16wk gestational age).
Infant sex, birth weight, length, and head circumference were
recorded at birth and abstracted from medical records. Trained
study staff administered questionnaires to the primary caregiver
when the child was 12 mo and at the time of the Bayley Scale
administration (20–40mo) to collect medical histories, demo-
graphic information, and dietary information. A measure of
maternal protein intake during pregnancy was derived from fre-
quency (amount per week) of fish, meat, and egg consumption.
The variable used in our analysis was constructed by categorizing
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the summary measure for nutritional status with the 25th and
75th percentiles as cutoff points. Maternal IQ was assessed using
the Raven’s Progressive Indices (Raven 1981). Interviewers also
administered the HOME instrument that had been previously
translated and adapted for use in Bangladesh (Black et al. 2004).

Statistical Analysis
Distributional plots and descriptive statistics were examined for
all variables by clinic (Sirajdikhan and Pabna). We modeled man-
ganese, lead, and arsenic as natural log–transformed and centered
continuous variables. This transformation achieves a common
scale, and accounts for the severe right-skewedness of the metals’
concentrations. Neurodevelopment scores were approximately
normally distributed and were modeled as z-scored continuous
outcomes.

All statistical procedures were performed using R (version
3.1.3; R Foundation for Statistical Computing).

Covariates. The following covariates were included in all
models to adjust for confounding: child’s sex, child’s age at the
time of neurodevelopmental testing, mother’s age at the time of
the child’s birth, maternal education (less than high school vs. at
least high school), maternal IQ, HOME score, secondhand
smoke exposure at baseline (smoking environment vs. non-
smoking environment), and protein intake (low vs. medium vs.
high protein intake). Protein effect was found to be linear, and
was therefore modeled as ordinal in the analyses. Continuous
covariates (age at testing, mother’s IQ, mother’s age at birth,
HOME score) were modeled allowing for quadratic effects.
Four percent of eligible children were excluded (n=33)
because of missing covariate data; we assumed these data were
missing at random.

Linear regression. We began by conducting multivariable
linear regression analysis with models of the form:

Yi = b0 +b1Asi + b2Mni + b3Pbi + bTZi +ei, (1)

where Y is the continuous neurodevelopment phenotype (CS,
LCS); Mn, As, and Pb are the centered log concentrations of
manganese, arsenic, and lead, respectively; and Z=Z1, . . . ,Zp
are additional p potential confounders.

Bayesian kernel machine regression. To allow for potential
synergistic and nonlinear effects among mixture components, we
implemented BKMR, a new statistical approach for multipollu-
tant mixtures that flexibly models the joint effect of the mixture
using a kernel function (Bobb et al. 2015). (Details on the
approach are described in Supplemental Material, “Bayesian
Kernel Machine Regression” section.). We also provide code for
the analyses conducted (Supplemental Material, R Code). This
novel method allows estimation of nonlinear and nonadditive
dose–response functions for a (potentially high-dimensional) set
of correlated exposures accounting for uncertainty. A key feature
of BKMR is that the form of the exposure–response function is
flexibly modeled, and does not need to be specified a priori (e.g.,
using quadratic terms). The BKMR model is given below.

Yi = hðAsi,Mni,PbiÞ+ bTZi +ei (2)

The function hðÞ is an exposure–response function that
accommodates nonlinearity and/or interaction among the mixture
components. In this setting, it can be challenging to specify ex-
plicitly a set of basis functions (e.g., spline or polynomial terms)
to represent hðÞ. For example, to allow for nonlinearity and inter-
action by using a spline basis with three degrees of freedom (DF)
and including all the interaction terms would require estimating
63 parameters in the case of 3 metals, 255 parameters in the case

of 4 metals, and 1,023 parameters in the case of 5 metals [more
generally, ð1+DFÞM − 1 parameters in the case of M metals].
BKMR handles the potentially high-dimensional parameter space
of the exposure–response function by using a kernel exposure–
response machine representation for hðÞ. The kernel machine rep-
resentation enables formulating model (2) as a linear mixed
model (Liu et al. 2007), which achieves regularization of the
estimated exposure–response function and provides several com-
putational advantages (details in Bobb et al. 2015). Intuitively,
the resulting linear mixed model assumes that two individuals
who have similar exposure profiles (e.g., similar values of
zi = (Asi,Mni,Pbi)) will have similar estimated health effects (e.
g., hi = hðziÞ and will be close to hj = hðzjÞ for individuals i and
j), where the similarity (or distance) between individuals’ expo-
sure profiles is measured using the kernel function.

We next provide details on BKMR specification and model
fitting. Note that fitting BKMR depends on the choice of kernel
function. We used the Gaussian kernel, which flexibly captures a
wide range of underlying functional forms for hðÞ and has been
shown to work well in simulation studies based on realistic expo-
sure–response scenarios (Bobb et al. 2015). Fitting the BKMR
model yields an estimate of the exposure–response function hðÞ
and its uncertainty. From the model fit, we also derived summary
statistics that quantify scientifically relevant features of the expo-
sure–response function in order to gain insight on the joint effect
of the mixture. Credible intervals obtained from BKMR fit incor-
porate the additional uncertainty due to estimation of a high-
dimensional set of exposures, which accounts for multiple-testing
penalty (Scott and Berger, 2010).

Generalized additive models. In order to assess the reproduci-
bility of the BKMR results and to test for potential interactions
among mixture components, we subsequently fitted multivariable
generalized additive models (GAMs). GAMs are an alternative
approach to flexibly model dose–response curves, and can be use-
ful to assess the validity of prior assumptions of BKMR in lower-
dimensional settings. To test for interaction, we compared two
specifications of GAM employing the tensor product smoother,
tiðÞ, one that includes the smoothed terms for the metals addi-
tively [i.e., tiðAsi,Mni,PbiÞ= tiðAsiÞ+ tiðMniÞ+ tiðPbiÞ] and one
that allows for a joint smoothed effect of arsenic and manganese
[i.e., tiðAsi,Mni,PbiÞ].

Sensitivity analyses. Finally, we performed three sensitivity
analyses: a) we assessed the influence of extreme observations by
fitting models with and without outliers. Outliers were identified
using the extreme Studentized deviates statistics with the proce-
dure proposed by Rosner which specifies a cut-off for outlier
selection that optimizes the number of points to exclude (Rosner,
1983); b) we also evaluated the influence of prior specification
for BKMR by fitting the approach with two alternative prior
assumptions allowing for different degrees of smoothness (see
Supplemental Material, Sensitivity Analyses for BKMR); and c)
finally, we assessed the robustness of our results by further
adjusting for child exposure to heavy metals at 20–40mo, consid-
ered in Rodrigues et al. (2016). Arsenic and manganese concen-
trations in drinking water and blood lead level measures were
only available for 524 children. As precision is reduced due to
the smaller numbers of observations, we fitted BKMR using
grouped variable selection (Bobb et al. 2015):

Yi = h½Group1 = ðAsi,pre-natal,Mni pre-natal,Pbi pre-natalÞ, Group2
= ðAsi post-natal,Mni post-natal,Pbi post-natalÞ�+ bTZi +ei

The procedure achieves higher efficiency by accounting for
the correlation of the within-group mixture components and
allows identifying the most important time window of exposure
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(prenatal vs. postnatal). (For details, see Supplemental Material,
“BKMR with Hierarchical Variable Selection”.).

Results

Study Population Characteristics
Demographic characteristics of participating mother–infant pairs
from Pabna and Sirajdikhan clinics in Bangladesh are presented
in Table 1. Important differences between these two study sites
were observed. Compared to Sirajdikhan, mothers in Pabna were
less likely to complete secondary education, more likely to live in
a smoking environment, and less likely to report a low-protein
intake diet. Compared to Sirajdikhan, children in Pabna had
lower birthweight and lower CS. Cord blood manganese and ar-
senic concentrations were significantly higher in Pabna: manga-
nese [geometric mean ± standard deviation ðSDÞ (range)]: Pabna
9:7±2:6 ð1:7− 303:1Þlg=dL, Sirajdikhan 5:4±1:7 ð1:2− 88:6Þ
lg=dL; arsenic: Pabna 1:0± 2:2 ð0:1− 27:7Þlg=dL, Sirajdikhan
0:4±1:9 ð0:1− 7:4Þlg=dL. Cord blood lead concentrations were
significantly higher in Sirajdikhan: lead [mean±SD (range)]:
Pabna 1:8± 1:9 ð0:3-79:1Þ lg=dL, Sirajdikhan 6:0±1:9ð1:0−
36:0Þ lg=dL. Metals concentrations were significantly correlated
onlyamongparticipants from thePabnaclinic (Figure 1), indicating
that sources ofmetalsmight differ across sites. Given the important
differences in exposure profiles and baseline characteristics
observed across the two study sites, regression models were strati-
fied by clinic in primary analyses and adjusted for clinic in second-
ary analyses.

Multivariable Regression Analyses
Table 2 displays associations between metals and neurodevelop-
ment outcomes from multivariable linear models stratified by
clinic (see Tables S2–S3 for complete regression output). Among
the potential confounders, child’s age at testing, clinic, and mater-
nal education were most strongly associated with neurodevelop-
ment outcomes. Protein intake was significantly associated with
CS and LCS. HOME inventory scale was significantly associated
with CS (Tables S2–S3).

Linear regression analyses of data from the Pabna clinic
revealed a significant negative association of manganese with CS
adjusting for arsenic and lead [CS: − 0:2 ð− 0:4, − 0:02Þ]. Given
these estimates, we expect CS scores to decline by 0.2 SDs per
interquartile range (IQR) change in log manganese concentration
(log ðMnlg=dlÞ IQR=1:3).

In the Sirajdikhan clinic, an IQR change in log lead con-
centrations (log ðPb lg=dlÞ IQR=0:9) was marginally associ-
ated with lower CS ½− 0:1 ð− 0:2, 0:0Þ�, and an IQR change in
log arsenic concentrations (log ðAs lg=dlÞ IQR=0:9) was mar-
ginally associated with lower LCS ½− 0:08 ð− 0:2, 0:0Þ�. No
significant associations were observed for manganese with
neurodevelopment outcomes in Sirajdikhan.

Bayesian Kernel Machine Regression Analyses
In order to relax the assumptions of linearity and additive effects
imposed in the aforementioned regression models, we imple-
mented BKMR, which yields an estimate of the joint exposure–
response function of the three metals.

Inferences on mixture effects were obtained by computing
posterior mean estimates (and 95% posterior credible intervals)
of the change in CS associated with changes in the level of each
of the mixture components (see Figures 2–3 and Figures S1–S4;
Table 3 summarizes these findings). In particular, we estimated
a) the cumulative effect of the mixture by estimating the expected
change in CS associated with concurrent changes in all of the
components of the mixture from their median level; b) the effect
of an IQR change of each metal on CS and potential interactions
among the metals by estimating the change in the CS for a
change in the component of interest from its 25th to 75th percen-
tile, while setting the other metals at the median, 25th, or 75th
percentile levels; and c) the dose–response relationship of each
mixture component and potential interactions among the metals
by estimating the predicted CS for each level of the component
of interest, setting the other metals at the median, 25th, or 75th
percentile levels.

Table 1. Descriptive characteristics of Pabna and Sirajdikan mother–infant pairs.

Characteristic
Pabna (n=409)a Sirajdikhan (n=416)b

n ð%Þ Mean±SD Range n ð%Þ Mean±SD Range

Prenatal exposure measures (GM±GSD)c

Cord blood As* (lg=dl) 408 1:0± 2:2 0:1–27:7 (IQR: 0.6, 1.6) 410 0:4± 1:9 0:1–7:4 (IQR: 0.3, 0.6)
Cord blood Mn* (lg=dl) 408 9:7± 2:6 1:7–303:1 (IQR: 4.8,18) 410 5:4± 1:68 1:2–88:6 (IQR: 3.9, 6.6)
Cord blood Pb* (lg=dl) 408 1:8± 1:9 0:27–79:1 (IQR: 1.2, 2.4) 410 6:0± 1:89 1:0–35:9 (IQR: 3.9, 9.7)
Neurodevelopment outcomes
Cognitive score (CS)* 403 59:1± 5:9 28–71 413 60:4± 3:7 47–70
Linguistic composite score (LCS) 402 52:0± 8:6 29–74 413 52:9± 5:8 35–76
Child characteristics
Birth weight (g)* 408 2:8± 0:5 1:5–4:8 415 2:9± 0:3 1:0–3:8
Gestational age at birth (weeks) 409 39:6± 1:7 32–43 416 39:5± 1:3 30–42
Head circumference at birth (cm) 409 32:6± 1:3 24–37 416 32:8± 1:4 28–48
Female sex 203 (49.6) 203 (48.7)
Maternal characteristics
Age at enrollment (years) 409 22:9± 4:2 18–41 416 22:9± 4:4 18–40
IQ* 394 26:0± 5:6 0–39 414 20:8± 8:3 6–54
Education: � secondary* 324 (79) 377 (90)
Any smokers in household: yes* 205 (50) 146 (35) (NA=1)
Protein intake LOW* 3 (0.8) 198 (49.9)
Protein intake MEDIUM 228 (55.7) 199 (47)
Protein intake HIGH 178 (43.5) 13 (3.1)

Note: Unless specified, there is no missing data in maternal characteristics; IQR, interquartile range; SD, standard deviation.
aNumbers may not sum to total sample size (n=409) for some characteristics due to missing data.
bNumbers may not sum to total sample size (n=416) for some characteristics due to missing data.
cGeometric mean ðGMÞ±geometric standard deviation ðGSDÞ reported for blood metals concentrations.
*Individuals in Pabna differed from Sirajdikhan, p<0:05.
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Figures 2 and 3 illustrate the estimated joint effect of arsenic,
manganese, and lead on CS in Pabna and in Sirajdikhan, respec-
tively, from these models.

We first display numerical summaries of the overall effect
of the mixture, defined as the change in the (z-scored) neurode-
velopment scores associated with a simultaneous change in each
of the three metals from a particular threshold (25th percentile to
75th percentile) as compared to when those metals are each at
their median value (50th percentile) (Figure 2A). We found a
joint toxic effect of the mixture in the Pabna clinic. In particular,
the joint effect was statistically significant when all metals were
at or above their 60th percentile, as compared to when all metals
were at their median values, and the toxicity increased at higher
levels of the three joint exposures. We then sought to disentangle
which of the three metals might be driving this overall associa-
tion (Figure 2B) by estimating univariate summaries of the
change in the neurodevelopment scores associated with a change
in a single pollutant from its 25th percentile to 75th percentile,
where all of the other pollutants are fixed at a particular threshold
(25th, 50th, or 75th percentile). We found that manganese is the
only metal displaying a significant effect in this clinic. Its nega-
tive association with CS appears stronger at higher percentiles of
other metals. A change in log manganese concentration from the
25th to the 75th percentile is associated with a significant
decrease in CS of − 0:2 ð− 0:5, 0:0Þ, − 0:3 ð− 0:5,− 0:1Þ and
− 0:4 ð− 0:6,− 0:2Þ SDs when lead and arsenic are set at the
25th, 50th, and 75th percentiles, respectively. To investigate

potential nonlinearity of the exposure response function, we then
estimated the univariate exposure–response functions (Figure
2C). The plot shows a suggestion of nonlinear effects of manga-
nese and arsenic. We note that although we observed a U-shaped
dose–response curve for manganese, there is considerable vari-
ability about the curve for high manganese concentrations. The
single-pollutant estimates from Figure 2B suggested possible
interaction of the mixture. In particular, we saw that the estimated
association between manganese and neurodevelopment scores
increased as lead and arsenic both increased from their 25th to
their 75th percentiles. To investigate this further, we then plotted
bivariate cross-sections of the exposure–response function
(Figure 2B). The figure suggests a potential interaction between
arsenic and manganese in their association with CS, whereby the
significant negative slope of manganese becomes steeper at
higher levels of arsenic concentration. Conversely, the nonsignifi-
cant positive slope of arsenic becomes flat at higher levels of
manganese concentration. However, the confidence intervals in
Figure 2B are highly overlapping, indicating lack of statistical
significance. The plots in Figure 3 give summaries of the fit of
the model in the Sirajdikhan clinic. Here, we find weaker evi-
dence of a joint toxic effect (Figure 3A). Although not statisti-
cally significant, lead appears to be the most neurotoxic metal in
the Sirajdikhan clinic, where lead levels are higher than those
found in the Pabna clinic (Figure 3B) with point estimates close
to what was estimated by multivariable linear regression
½− 0:1 ð− 0:2, 0:0Þ�. In contrast with the Pabna population, the

Figure 1. Correlation (Pearson) matrix for maternal and cord blood metals. (A) Pabna (B) Sirajdikhan.

Table 2. Results from multivariable regression models of neurodevelopment stratified by clinic.

Model
Pabna Sirajdikhan

n ba CI n ba CI

Cognitive score
Loge blood Asb 0.073 − 0:08, 0:23 − 0:017 –0:09, 0:06
Loge blood Mnb 389 − 0:206* − 0:39, − 0:02 403 0.025 − 0:04, 0:09
Loge blood Pbb 0.024 − 0:10, 0:15 − 0:075† − 0:16, 0:01
Linguistic score
Loge blood Asb 0.035 − 0:15, 0:10 − 0:080† − 0:17, 0:01
Loge blood Mnb 388 − 0:047 − 0:23, 0:14 403 0.034 − 0:04, 0:11
Loge blood Pbb − 0:028 − 0:15, 0:10 − 0:028 − 0:12, 0:07

Note: Models adjusted for metals listed above, child gender, mother IQ, maternal education, maternal protein intake, smoking environment, age at testing, and maternal age at delivery;
models allow for quadratic effect of age at testing, mother IQ and age at birth, HOME score.
aEffect for a IQR change in the log metals concentrations.
bBlood metal concentrations loge–transformed and centered at mean and divided by IQR.
*p<0:05.
†p<0:1.
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effects appear linear (Figure 3C) and noninteractive (e.g., slopes
for each metal are similar at varying levels of the other metals;
Figure 3D).

To formally test for the presence of interaction between ar-
senic and manganese as suggested by the BKMR analyses, we
then fitted the multivariable generalized additive regression
model allowing for arsenic and manganese interaction, adjusting

for the smoothed term for lead and covariates in the Pabna clinic.
To test for arsenic and manganese interaction, we compared two
specifications of GAM, employing the tensor product smoother,
tiðÞ: one that includes the smoothed terms for the metals addi-
tively [i.e., tiðAsi,Mni,PbiÞ= tiðAsiÞ+ tiðMniÞ+ tiðPbiÞ] and the
other that allows for a joint smoothed effect of arsenic and man-
ganese [i.e., tiðAsi,Mni,PbiÞ= tiðAsiÞ+ tiðMniÞ+ tiðAsi,MniÞ+

Figure 2. Joint effect of the mixture on cognitive score (CS) in Pabna clinic estimated by Bayesian Kernel Machine Regression (BKMR). Model adjusted for
child gender, maternal IQ, maternal education, maternal protein intake, smoking environment, age at testing, and maternal age. (A) Overall effect of the mixture
(estimates and 95% credible intervals). This figure plots the estimated change in neurodevelopment score when exposures are at a particular percentile
(x-axis) compared to when exposure are all at the 50th percentile. (B) Single pollutant association (estimates and 95% credible intervals, gray dashed line at the
null). This plot compares the neurodevelopment score when a single pollutant is at the 75th vs. 25th percentile, when all the other exposures are fixed at either
the 25th, 50th, or 75th percentile. (C) Univariate exposure–response functions and 95% confidence bands for each metal with the other pollutants fixed at the
median. (D) Bivariate exposure–response functions for: arsenic when manganese is fixed at either the 25th, 50th, or 75th percentile and lead is fixed at the me-
dian (top left panel); arsenic when lead is fixed at either the 25th, 50th or 75th percentile and manganese is fixed at the median (top right panel); manganese
when arsenic is fixed at either 25th, 50th, or 75th percentile and lead is fixed at the median (bottom left panel); manganese when lead is fixed at either the
25th, 50th, or 75th percentile and arsenic is fixed at the median (bottom right panel). [percentiles: (0.25,0.5,0.75); As= ð0:56,0:88,1:60Þ, Mn= ð4:80,
7:12,17:5Þ, Pb= ð1:15, 1:63, 2:42Þ].
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tiðPbiÞ]. The analyses yielded suggestive evidence of potential
interaction (p=0:1). Note that our stratified analyses might be
underpowered to detect interactions. In the next section, we
evaluate arsenic–manganese interaction in the whole sample
adjusting for clinic. GAM analyses support the results
obtained from fitting the BKMR, indicating manganese as the
metal most predictive of CS in Pabna. The approach found
evidence of a nonlinear U-shaped effect of manganese

(results not shown). The same model was fitted for the sam-
ple of mother–infant pairs in Sirajdikhan and, again, no evi-
dence of interaction (p=0:9) was found, and linearity was
confirmed.

In models of language composite scores, manganese was also
negatively associated among Pabna participants, though associa-
tions were weaker than in models of CS (Figure S3). In
Sirajdikhan, arsenic was associated with lower LCS (Figure S4).

Figure 3. Joint effect of the mixture on cognitive score in Sirajdikhan clinic estimated by Bayesian Kernel Machine Regression (BKMR). Model adjusted for
child gender, maternal IQ, maternal education, maternal protein intake, smoking environment, age at testing, and maternal age. (A) Overall effect of the mixture
(estimates and 95% credible intervals). This plot compares the neurodevelopment score when all exposures are at a particular quantile to when all are at the
50th percentile. (B) Single pollutant association (estimates and 95% credible intervals, gray dashed line at the null). This plot compares the neurodevelopment
score when a single pollutant is at the 75th vs. 25th percentile, when all the other exposures are fixed at either the 25th, 50th, or 75th percentile. (C) Univariate
exposure–response functions and 95% confidence bands for each metal with the other pollutants fixed at the median (D) Bivariate exposure–response functions
for: arsenic when manganese is fixed at either the 25th, 50th, or 75th percentile and lead is fixed at the median (top left panel); arsenic when lead is fixed at ei-
ther the 25th, 50th, or 75th percentile and manganese is fixed at the median (top right panel); manganese when arsenic is fixed at either 25th, 50th, or 75th per-
centile and lead is fixed at the median (bottom left panel); manganese when lead is fixed at either the 25th, 50th, or 75th percentile and arsenic is fixed at the
median (bottom right panel). [percentiles: (0.25,0.5,0.75); As= ð0:26,0:40,0:60Þ, Mn= ð3:93,5:14,6:66Þ, Pb= ð3:87,6:12,9:67Þ].
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Regression Analyses Adjusted by Clinic

In multivariable linear regression models adjusting for clinic
(Tables S2–S3), an IQR change in manganese (log ðMn lg=dlÞ
IQR=0:8) was significantly associated with lower CS
[− 0:1 ð− 0:2,− 0:02Þ]. An IQR change in arsenic [log ðAs
lg=dlÞ IQR=1:1] was marginally associated with higher scores
[CS: 0:08 ð− 0:01,0:2Þ]. These results are similar to those
observed in the Pabna clinic, suggesting that this clinic may be
driving the observed associations. Note that the magnitude of
manganese effect appears weaker in the whole sample because
the IQR is smaller in the Sirajdikhan clinic than in the Pabna
clinic.

BKMR analyses estimated significant toxic effects of manga-
nese and lead. The analyses yielded similar results for manganese
as in models with only Pabna participants, and slightly stronger
evidence for lead toxicity relative to models with only Sirajdikhan
participants (Figure S1). An IQR change in the log–transformed
lead [log ðPb lg=dlÞ IQR=1:4] was associated with reduced CS
by − 0:1 ð− 0:2,− 0:03Þ SDswhen arsenic andmanganese were at
the median level. Compared to lead and arsenic, manganese
appears to be the most neurotoxic component of the mixture.
Finally, fitting the GAM model for all study participants adjust-
ing for clinic yielded similar results to the GAM model for
Pabna participants. Allowing for an interaction between arsenic
and manganese significantly improved the fit of the model
[p-value= 0:04].

Sensitivity Analyses
When we excluded three outliers of cord blood levels (three high-
est manganese levels and one highest arsenic level in Pabna
clinic), results from BKMR analyses were similar. Generalized
additive model analyses yielded weaker evidence of arsenic–
manganese interaction in the Pabna clinic (p=0:3). However,
when fitting the GAM model for all study participants adjusting
for clinic, arsenic–manganese interaction was still statistically
significant (p=0:01).

BKMR was fitted considering two alternative prior specifica-
tions on the smoothness of the dose–response function (higher
and lower with respect to the main analyses). Results are robust
to changes in prior specification. Sensitivity analyses using
BKMR with grouped variable selection that include water ar-
senic, water manganese, and blood lead at 24 mo, in the smaller
sample for which such information was available (n=524),
reveal that cord blood metal exposures are the most important
drivers of neurodevelopement at 20–40mo. BKMR estimates a
99% posterior inclusion probability for the prenatal exposures vs.

28% posterior inclusion probability for the postnatal exposures in
the model for CS and 85% posterior inclusion probability for the
prenatal exposures vs. 23% posterior inclusion probability for the
postnatal exposures in the model for LCS. In stratified analyses
by clinic as well as analyses adjusted by clinic, the dose–response
relationships for the 24-mo metal exposures are linear, additive,
and nonstatistically significant. Even in this smaller sample for
which postnatal metal concentrations were available, results for
cord blood concentrations of arsenic, manganese, and lead are ro-
bust to the adjustment of postnatal exposures.

Discussion
Using BKMR, a new, nonparametric statistical method to capture
the complexity of mixed exposures, we evaluated the joint effect
of prenatal arsenic, lead, and manganese on neurodevelopmental
outcomes among 20- to 40-mo-old children in Bangladesh. This
method allows for testing both the overall mixture effect and the
effects of each mixture component within the context of the over-
all joint exposure. Further, the approach can identify the most im-
portant windows of vulnerability while accommodating highly
correlated exposures using hierarchical variable selection.
Finally, employing a Bayesian approach incorporates the uncer-
tainty in the estimation of a high-dimensional set of exposures,
accounting for multiple comparisons. Results of the analyses dif-
fered by clinic due to differences in exposure profiles. Using
BKMR in this study population, we estimated a significant nega-
tive joint effect of the mixture of arsenic, manganese, and lead on
CS that appears statistically significant when cord blood metal
concentrations are all above the 60th percentile in the Pabna
clinic (As>0:7 lg=dl, Mn>4:2lg=dl, Pb>6:6 lg=dl, Figure 2).
Further, we reported a) a marginally significant negative and
additive linear association of lead with CS in the Sirajdikhan
clinic; b) a negative and nonlinear association of manganese with
CS within the overall mixture effect; and c) marginally significant
interaction between manganese and arsenic on CS within the
overall mixture (i.e., multiplicative), such that toxicity of manga-
nese may increase more than additively in the presence of arsenic
in the Pabna clinic. Our results suggest that arsenic may be a
“potentiator” of manganese, i.e., its toxicity may be dependent to
a large extent on the presence of manganese, and alone may not
have strong main effects. While some results suggest a positive
(although not statistically significant) slope of arsenic, we believe
this positive effect may be due to an unmeasured confounder. For
example, arsenic exposure sources include food and water, access
to which may be a correlate of better nutrition in pregnancy, par-
ticularly in a poor country such as Bangladesh. Better nutrition in
pregnancy would likely predict higher CS. Other unmeasured

Table 3. Descriptive summary of results on the joint association of the metal mixture (arsenic, manganese, lead) and cognitive score.

Site Arsenic Manganese Lead Overall mixture

Pabna Suggestive evidence of protec-
tive main effect††; suggestive
evidence of interaction with
manganese when lead is at the
median (Figures 2B and 2D)

Significant nonlinear toxic main
effect when lead and arsenic
above 60th percentile (Figure 2B)

No main effect (Figure 2B) Significant toxic effect
(Figure 2A)

*Sirajdikhan No main effect (Figure 3B) No main effect (Figure 3B) Suggestive evidence of linear main
effect at all levels of arsenic and
manganese (Figure 3B)

Not significant (Figure 3A)

Combined Sites Protective main effect when lead
and arsenic are below the me-
dian†† (Figure S1b); potentiates
the toxic effect of manganese
(Figure S1d)

Significant nonlinear effect at all
levels of arsenic and lead (Figure
S1b)

Significant linear effect when man-
ganese and arsenic are at the me-
dian (Figure S1b)

Suggestive evidence of toxic effect
(Figure S1a)

*MeanBlood Pb= 6lg=dl, which may have overwhelmed mixture in stratified analysis.
††This result might be due to residual unmeasured confounding.
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confounders are possible. We will conduct exposure studies in
future work to try to disentangle arsenic exposure and diet in
pregnancy. Our overall finding of a negative joint effect of metal
mixtures on neurodevelopment is consistent with studies indicat-
ing the importance of considering joint chemical exposure on pe-
diatric health (Carpenter et al. 2002; Hertzberg and Teuschler
2002; Claus Henn et al. 2014). A unique feature of BKMR is that
we are able to assess both additive and multiplicative components
of a mixture simultaneously.

A strength of BKMR is that it not only addresses the overall
mixture effect, but can also tease out the contributions of each
component, with the caveat that these contributions are in the con-
text of the joint exposure at the exposure levels seen in the cohort.
The BKMR-grouped variable selection analyses indicate that in
this sample, prenatal exposure to heavy metals is more predictive
of 20- to 40-mo neurodevelopment relative to postnatal exposures
measured at 20–40mo. Our stratified analyses by clinic reveal that
metals’ relative concentrations and baseline population character-
istics influence the metal mixture effect on child neurodevelop-
ment. For example, we observed strong evidence of a manganese
effect predicting lower CS with a suggestion of nonlinearity.
Previous studies in lower-exposed populations indicated an
inverted-U relationship between manganese and neurodevelop-
ment, providing evidence for its beneficial effect at midrange lev-
els and toxic effect at both lower and higher concentrations (Claus
Henn et al. 2012). Although our study instead indicates a toxic
nonlinear effect of manganese that flattens at higher concentra-
tions (Figure 2C), this is in the context of arsenic and lead expo-
sures that are much higher than those observed in most
populations. The context-dependent nature of a chemical’s main
effect is perhaps not surprising, given what we know about over-
lapping biological properties, but is rarely considered when com-
paring studies of the same chemical or in policy making. Indeed,
this issue is likely critical in risk assessment, and may also
explain variability in results among studies that address the main
effects of neurotoxicants, but have variable effect estimates. The
higher manganese levels in our study population, compared to U.
S. populations, may mean Bangladesh is at a point in the dose–
response curve where a potential ceiling effect is seen and no fur-
ther toxicity occurs. Alternatively, they may be due to the differ-
ent contextual effect of higher population medians for arsenic
and lead than that seen in Mexico or U.S. populations.
Interestingly, the marginally significant association of lead with
CS was found to be linear and additive in this population. The
effects are clinically relevant, as the strength of the impact is sim-
ilar in magnitude for other well-known risk factors adjusted for
in the present study (e.g., maternal education, protein intake).
These effects are also comparable to lead effects seen in other
studies (Budtz-Jørgensen et al. 2013). Blood lead levels in
Bangladesh are much higher than in developed populations, and
our results are consistent with findings from highly exposed pop-
ulations from the 1980s and 1990s. This might mean that lead ex-
posure at these higher levels is primarily neurotoxic on its own,
and does not interact with other chemicals. More mixtures
research on lead is needed in lower-exposed populations in which
lead’s main effects are less prominent.

The neurotoxicity of manganese exposure was more pro-
nounced in the Pabna population, where concentrations of man-
ganese were highest. In this clinic, we estimated that the change
in the log–transformed manganese from the 25th to the 75th per-
centile is associated with − 0:30 ð− 0:52,− 0:04Þ SDs in CS
when lead and arsenic are held constant at their median levels.
Note that Pabna displays a larger IQR for manganese than the
overall study population. In addition, lead was not associated
with scores among children in the Pabna clinic. As previously

noted, we believe that in the context of very high Mn exposure,
neurotoxicity has plateaued and the addition of other metals, such
as arsenic or lead, does not produce any additional neurotoxicity.
Consistent with this hypothesis, arsenic and lead appear to be
neurotoxic in the Sirajdikhan clinic, where manganese concentra-
tions are lower, although we note their effect estimates are not
statistically significant.

In summary, our findings suggest that mixtures may induce
different dose–response relationships in communities and that the
size and shape of the dose–response curves are dependent on the
population’s overall metal exposure levels. This perhaps is not
surprising, as interactions are likely to be dose-dependent. As an
example, one may not expect interaction in the context of a
severe poisoning because the toxicity of the high-dose chemical
overwhelms the toxic properties of any concurrent levels of toxic
chemicals (Könemann and Pieters 1996), and chemical interac-
tions are less likely at high-dose exposures. Several other factors
might contribute to differences in exposure profiles and in their
impact on neurodevelopment across the two study sites. Hetero-
geneity might be due to geological differences in the bioavailabil-
ity of metals at each site, or to cultural/behavioral factors influ-
encing differential exposure to metals. Qualitative studies in the
two populations revealed potentially different habits in accessing
water sources, with the Sirajdikhan population being more likely
to employ pond water to cook and clean, while the Pabna popula-
tion is more likely to use well water. Differences between the two
populations may be due to differences in other contextual factors
as well. For example, we observed that participants from
Sirajdikhan had lower protein intake, possibly due to their vege-
tarian habits. Finally, we note that our methodology (BKMR) is
robust, and should be able to incorporate data on nonchemical
toxicants as well as chemicals. Nutritional intake might also
interact with the metals mixture; this will be the subject of future
investigation and will be incorporated by BKMR.

Limitations
Umbilical cord blood was used as a biomarker for all metals to
represent prenatal exposure. While cord blood will reflect late
prenatal exposure to lead, other matrices may better reflect expo-
sure to arsenic or manganese. Manganese levels are tightly regu-
lated via homeostatic mechanisms in the blood; nonetheless,
blood manganese is believed to be a reasonable indicator of envi-
ronmental exposure and body burden in situations of chronic ex-
posure. For arsenic, nail is considered the best biomarker for
long-term arsenic exposure, but it was not available for the pres-
ent analyses. Nonetheless, if our use of blood metals introduced
exposure error via misclassification, given the 2 y that elapsed
from exposure assessment to Bayley Scale assessment, any error
would be expected to be nondifferential and would likely drive
effects toward null values. We believe any measurement error
might lead to underestimation of the toxic effect of any of the
three metals. Loss to follow-up might induce bias in our analyses;
however, it is unlikely to be dependent on child neurodevelop-
ment. Potential residual confounding might lead to bias in the
reported estimates. However, stratified analyses by clinic reduced
heterogeneity in demographics that could act as confounders.
Finally, measurement error in confounders might lead to inflated
estimates.

Strengths
Metal concentrations display high variability and heterogeneous
exposure profiles are found, across clinics, increasing the general-
izability of the findings. We employed a novel, flexible statistical
method, BKMR, and we were able to quantify and visualize the
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joint effect of the mixture and potential nonlinearities and nonad-
ditive effects without coarsening the continuous exposures, thus
reducing measurement error bias. Finally, by adopting this
method, we overcome important limitations of traditional analy-
ses, such as single metal effect estimation, model misspecifica-
tion, and increased false discovery when fitting many regression
models.

Conclusion
Coexposure to arsenic, manganese, and lead during gestation is
shown to be jointly neurotoxic and to affect neurodevelopment of
Bangladeshi children in early life stages in a complex fashion.
Manganese at high concentrations was found to be the most neuro-
toxic component of the metal mixture. Strategies to monitor and
prevent high exposure tomanganese andother toxicmetals are criti-
cal in the Bangladeshi population, especially among pregnant
women. Heterogeneous findings across our two study sites that dif-
fer in sociodemographic characteristics motivate further investiga-
tion of child neurodevelopment, accounting for the complex
mixtures of environmental, nutritional, and social risk factors that
shape mothers’ and children’s development. Our study is among
the first designed to address the effects of mixtures, and our results
suggest that BKMRmay be a valuable tool in larger-scale mixture
studies. As this research field progresses, we plan to utilize these
methods on other chemicals and nonchemical toxicants, and per-
haps ultimately employ BKMR for research in the nascent field of
“exposomics.”
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